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Abstract

Recent advances in interactive video generations have demonstrated diffusion
model’s potential as world models by capturing complex physical dynamics and
interactive behaviors. However, existing interactive world models depend on
bidirectional attention and lengthy inference steps, severely limiting real-time per-
formance. Consequently, they are hard to simulate real-world dynamics, where
outcomes must update instantaneously based on historical context and current
actions. To address this, we present Matrix-Game 2.0, an interactive world model
generates long videos on-the-fly via few-step auto-regressive diffusion. Our frame-
work consists of three key components: (1) A scalable data production pipeline for
Unreal Engine and GTA5 environments to effectively produce massive amounts (∼
1200 hours) of interactive video data; (2) An action injection module that enables
frame-level mouse and keyboard input as interactions; (3) A few-step distillation
based on the casual architecture for real-time, streaming video generation. Matrix-
Game 2.0 can generate high-quality minute-level videos across diverse scenes at
an ultra-fast speed of 25 FPS. We open-source our model weights and codebase to
advance research in interactive world modeling.

1 Introduction

World models [2, 23, 31] have gained significant attention due to their capability to understand
real-world interactions and predict future states [46]. By enabling intelligent agents to perceive
their surroundings and respond to actions, these models reduce the cost of real-world trials and
facilitate interactive simulation. Consequently, world models show great promise in fields such as
game engines [9, 12, 41], autonomous driving [17], and spatial intelligence [2, 3, 29, 45].

Recent advances in video generation models [4, 21, 26, 39, 42] have shown remarkable progress in
learning knowledge from large-scale real-world datasets, ranging from physical laws to interactive
scenes. This demonstrates their huge potential to serve as world models. Among the various
research directions in this domain, interactive long video generation [5, 6] has become increasingly
important due to its practical applications, where long videos should be generated in real-time in
response to a continuous stream of user input. Specifically, when conditioned on user actions like
camera movements and keyboard inputs, the model generates frames causally, enabling real-time
user interaction. Despite impressive progress in interactive video generation, existing methods suffer
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Figure 1: Real-time Interactive Generation Results. We introduce Matrix-Game 2.0, a real-time
interactive video generation model. By integrating action modules and few-step distillation, it can
auto-regressively produce high-quality interactive videos given an input image in 25 FPS. The
demonstrated results cover various scenes and diverse styles, demonstrating its powerful generation
capabilities.
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Figure 2: Pipelines of Matrix-Game 2.0.
from several significant challenges:

• Lack of large-scale, high-quality interactive video datasets with rich annotations for training, such
as accurate actions and camera dynamics, due to the high cost and difficulty of collection.

• Latency issues with bidirectional video diffusion models [23, 27, 56], where generating a single
frame requires processing the entire video. This makes them unsuitable for real-time, streaming
applications where the model must adapt to dynamic user commands and produce frames on the fly.
The quadratic scaling of compute and memory requirements with respect to frame length, along with
the high number of denoising iterations, makes long video generation computationally intensive and
economically impractical.

• Severe error accumulation in existing auto-regressive video diffusion models [9,19,39]. While these
models generate the next frame based on previous frames, they often suffer from error accumulation
during generation, leading to degraded video quality over time.

To address these critical challenges in real-time interactive generation, we present Matrix-Game
2.0 - a novel framework specifically designed to achieve both real-time performance and robust
generalization across diverse scenarios. First, our technical core features a video diffusion transformer
with integrated action control modules, distilled into a causal few-step auto-regressive model via
Self-Forcing [18] based techniques. This architecture supports both training and inference through
an efficient KV caching mechanism, achieving 25 FPS generation on a single H100 GPU while
maintaining minute-long temporal consistency and precise action controllability - even in complex
wild scenes beyond the training distribution.

The model’s strong generalization capability is enabled by another innovation of ours: a comprehen-
sive data production pipeline that solves fundamental limitations in interactive training data. The
pipeline is based on Unreal Engine, including a Navigation Mesh-based Path Planning System for
data diversity and Quaternion Precision Optimization modules for accurate camera control. Moreover,
for Grand Theft Auto V(GTA5) environment, we developed a data recording system using Script
Hook integration, which enables synchronized capture of visual content with corresponding user
interactions. Together, these components produce large-scale datasets with frame-level annotations,
addressing two critical needs: (1) precise alignment between visual content and control signals, and
(2) effective modeling of dynamic in-game interactions.

By simultaneously tackling the challenges of efficiency and controllability, Matrix-Game 2.0 makes
significant strides in world modeling by introducing an efficient framework tailored for real-time
simulation and interaction. To support continued progress in this area, we will release the code and
weights of our pre-trained models.

2 Related Work

2.1 Controllable Video Generation

With the rapid advancement of diffusion models [16, 35, 37], significant progress has been made in
visual content generation for videos [4,14,25,40,49,57,59]. Most recent approaches have transitioned
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to bidirectional diffusion transformers [30] and auto-regressive models [9,19], enabling modern video
diffusion models to synthesize high-quality, temporally coherent, and substantially longer videos.
This rapid evolution of video generation [1, 28, 29, 47] has further driven the development of world
models that leverage video diffusion techniques [7, 18, 52] to implicitly learn physical laws, object
dynamics, and causality for complex environment simulation.

Controllable video generation serves as a core component of world simulation. Generally, con-
trol signals span multiple modalities and can be categorized into scene controllability and action
controllability. Extensive prior work has explored scene controllability, including [14, 21, 34, 43],
which leverages text, images, or 3D scene priors to regulate the scenes in generated videos. Beyond
scene control, action controllability, achieved through camera angles [48] or trajectories [15, 44], has
also emerged as a prominent research focus. These efforts have yielded promising advancements
in both the visual quality and controllability of generated videos. Certain world model-based ap-
proaches [12,13,29,53,56] further support both scene and action controllability. However, constrained
by computational resources and video length limitations, most existing models still struggle to achieve
real-time video generation.

2.2 Long-context Video Generation

Current video generation models are typically constrained to videos of ≤ 5 seconds due to limited
long video training data and prohibitive computational costs. Existing methods for long-context video
generation can be broadly categorized into two types: Combination of multiple short video segments,
and auto-regressive generation approaches. For multi-segment video generation, a simple yet effective
approach is to generate multiple overlapping segments of fixed length [10, 32, 56]. While some other
works [50, 58] adopt a two-stage pipeline, first generating key frames and then applying frame
interpolation. In contrast, auto-regressive models offer a natural advantage for variable-length video
generation. For example, methods such as Diffusion Forcing [7], CausVid [52], and Self-Forcing [18]
combine auto-regressive modeling with diffusion techniques to achieve promising results in long
video synthesis. However, these approaches remain largely confined to conventional Text-to-Video
(T2V) and Image-to-Video (I2V) tasks, leaving the challenge of generating long, interactive videos
largely unexplored.

2.3 Real-Time Video Generation

Diverse approaches currently exist to achieve real-time video generation. The primary methods
involve increasing the compression ratio of the VAE, performing knowledge distillation to reduce the
number of sampling steps in diffusion models, or combining KV Cache with a causal transformer
to autoregressively infer the next frame. LTX-Video [14] achieves generation times shorter than
the video duration on an H100 GPU by optimizing VAE compression ratios and applying model
distillation techniques [36, 51, 55]. Works such as Next-Frame Diffusion [11], Self-Forcing [18],
CausVid [52], and Oasis [12] leverage the characteristics of autoregressive models, combined with
knowledge distillation, to enable efficient few-step generation. Although these works achieve real-
time video generation, most of them cannot support real-time interaction. While Oasis manages to
enable real-time interaction, its visual quality degrades rapidly during the inference of long videos. In
our work, we follow the training paradigm of Self-Forcing [18] to allow few-step inference, achieving
not only fast long video generation but also maintaining stable and consistent frame quality.

3 Data Pipeline Development

We design and implement comprehensive data production pipelines to facilitate large-scale training
of interactive video generation models. Specifically, our work addresses two key challenges: (1)
generating gaming video data precisely aligning with keyboard and camera signal annotations, and
(2) enabling interactive video capture mechanisms to better model dynamic in-game interactions. For
practical deployment, we develop and curate a diverse dataset production pipeline comprising both
static and dynamic scenes sourced from the Unreal Engine and the GTA5 simulation environment.
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Figure 3: Overview of Our Data Production Pipeline based on Unreal Engine.

3.1 Unreal Engine-based Data Production

The development of high-performance interactive video generation models requires large-scale
datasets featuring precisely synchronized visual content and control signals like precisely aligned key-
board input and camera parameters. While existing datasets often lack accurate temporal alignment
between game-play footage and corresponding inputs, our Unreal Engine-based pipeline system-
atically addresses this gap through controlled synthetic data generation. Unreal Engine’s precise
environmental control and deterministic rendering make it particularly suitable for creating scalable,
multi-modal training data with guaranteed annotation accuracy.

As illustrated in Figure 3, our Unreal Engine-based data pipeline takes a navigation mesh and a
3D scene as input. The system then employs automated movement and camera control modules to
simulate agent navigation and dynamic viewpoint transitions. Finally, the resulting visual data and
corresponding action annotations are recorded and exported through an integrated MP4 encoder and
CSV generator.

The key innovations of our system comprise: (1) a navigation mesh-based path planning module to
enable diverse trajectory generation; (2) a precise system input and camera control mechanism to
ensure accurate action and viewpoint alignment; and (3) a structured post-processing pipeline for
high-quality data curation. Detailed descriptions of each component are provided below.

Figure 4: An example for Our Navigation System.

Navigation Mesh-based Path Planning System. To enhance the realism and behavioral diversity
of the generated training data, we developed an advanced navigation mesh–based path planning
system that facilitates dynamic and adaptive movement of non-player characters (NPCs). This system
supports real-time, deterministic path planning, a critical requirement for producing reproducible and
high-fidelity training data.

Our implementation builds upon Unreal Engine’s native NavMesh infrastructure, augmented with
customized path-planning optimizations that reduce the average query latency to less than 2 ms.
Furthermore, the system introduces controlled stochasticity in agent behavior, enabling diverse and
contextually coherent movement patterns while strictly adhering to logical navigation constraints.
This approach substantially enhances the richness of the training corpus by introducing realistic agent
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interaction dynamics and movement trajectories, thereby improving the generalization capacity of
downstream video generation models. A navigation example is shown in Figure 4. The green area in
the picture shows the area where the agent can move freely, preventing the agent from hitting the
walls and getting stuck.

Precise Input and Camera Control. We integrated Unreal Engine’s Enhanced Input system to
enable simultaneous capture of multiple keyboard inputs with millisecond-level precision. The system
maintains a synchronized buffer of input events aligned with rendered frames to ensure accurate
input–visual synchronization for training:

Inputframei = ({k1, k2, ..., kn}, timestampi) (1)

where each input state kj represents a specific key press or release event aligned with frame i.

To eliminate a critical error rate of 0.2% in camera rotation calculations, we implemented quaternion
precision optimization by using double precision arithmetic in intermediate calculations. This
optimization reduced rotation errors to a level that is effectively negligible.

Figure 5: Trajectory Examples of Collected Unreal Engine Data.

Data Curation. We developed a video frame filtering algorithm based on OpenCV to detect
and eliminate temporally redundant frames, thereby enhancing data efficiency. A velocity-based
validation mechanism was further introduced to identify and exclude invalid samples characterized by
zero or negative velocity, which typically indicate stationary or physically implausible motion states:

validity =

{
1 if ||v⃗|| > ϵ

0 otherwise
(2)

where v⃗ represents the velocity vector and ϵ is a small positive threshold to account for the precision
of floating points. This criterion ensures the retention of only semantically meaningful motion data
for subsequent model training.

Multi-thread Pipeline Accelerating. The data processing pipeline was redesigned to support
multi-thread execution, enabling dual-stream data production on a single RTX 3090 GPU. The system
employs separate rendering threads in conjunction with shared memory pools for efficient resource
utilization. Some representative trajectory examples are illustrated in Figure 5. The green line
segments represent the path of the agent. In complex scenarios, reasonable paths can also be planned.

3.2 GTA5 Interactive Data Recording System

To facilitate the acquisition of richly interactive dynamic scenes, we developed a comprehensive
recording system within GTA5 using Script Hook integration, which enables synchronized capture of
visual content with corresponding user actions.
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Figure 6: Overview of Our GTA5 Interactive Data Recording System.

We implemented a custom plugin architecture using Script Hook V to establish a recording pipeline
within the GTA5 environment. The plugin simultaneously captures mouse and keyboard opera-
tions with frame-accurate synchronization. Each item collected includes the RGB frame and the
corresponding mouse and keyboard operations.

As illustrated in Figure 6, Our system comprises three main components: Agent Behaviors, GTA
V Game Environment, and Recording System. The Agent Behaviors module includes autonomous
navigation, NPC interaction, and vehicle interaction capabilities, which are integrated into the GTA
V game through a custom C# modification. The game exports behavioral data in JSON format to
the Recording System, which utilizes OBS Studio for video capture with MP4 encoding and a Data
Collector for CSV generation. A synchronization mechanism ensures temporal alignment between
video frames and behavioral data, producing synchronized video files (.mp4) and behavioral datasets
(.csv) as the final output. dynamic control mechanisms, including autonomous navigation, NPC
interaction, and vehicle interaction, can be selectively enabled to generate interactive scenarios from
first-person or third-person perspectives. Environmental parameters such as vehicle density, NPC
number, weather patterns, and time-of-day settings can be adjusted to simulate a wide variety of
dynamic scenarios, enhancing the diversity and realism of the collected data. Specifically, the vehicle
density parameter is configurable within the range [0.1, 2.0] , while the NPC density parameter spans
the interval [0.2, 1.5].

To obtain an optimal viewpoint during vehicle navigation simulations, the system ensures precise cam-
era alignment through per-tick positional updates, maintaining an optimal and consistent viewpoint
relative to the vehicle throughout the simulation:

Cameraposition = Vehicleposition + offset × rotation (3)

Building upon the vehicle dynamics, the system infers and logs the corresponding keyboard inputs,
thereby generating a comprehensive and temporally aligned interaction data encompassing velocity,
acceleration and steering angle.

Figure 7: Trajectory Examples of Collected GTA5 Data.
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Additionally, we developed a runtime system to dynamically access navigation mesh information,
facilitating intelligent camera positioning and motion prediction. This system performs queries on
the navigation mesh data structure to extract spatial constraints and valid traversal paths, thereby
enabling optimal planning of the camera trajectory. The navigation mesh query process involves
real-time spatial data retrieval and path validation to ensure that camera movements are confined
within navigable regions while preserving optimal viewing angles for effective data acquisition.

3.3 Quantative Data Evaluation

We collected over 1.2 million video clips through our data curation pipeline, which demonstrated
robust performance in several key metrics. The overall accuracy of the data exceeded 99%, and the
system achieved a 50-fold improvement in the precision of the camera rotation. Furthermore, the
pipeline supported dual concurrent data streams per GPU, effectively doubling production efficiency.
A representative trajectory example is shown in Figure 7. The game environment in GTA5 is complex
and diverse. The lines in the picture represent the movement path of the agent. We can plan a
reasonable path to prevent the agent from colliding or blocking, effectively improving the accuracy
of the data.

4 Methods

In this section, we present the overall architecture and key components of Matrix-Game 2.0. First, we
train a foundation model using our diverse data collection, as detailed in Section 4.1. Subsequently,
Section 4.2 describes our distillation approach that transforms this foundation model into a few-
step auto-regressive diffusion model, enabling real-time generation of long video sequences while
maintaining visual quality.

4.1 Foundation Model Architecture

We propose Matrix-Game 2.0, a novel framework to vision-driven world model that explores intelli-
gence capable of understanding and generating the world without relying on language descriptions.
In contemporary works, text guidance has become the dominant modality for controlling — examples
include SORA [28], HunyuanVideo [22], and Wan [42], all of which leverage text descriptions for
generation. However, such methods often introduce semantic priors that bias the generation toward
linguistic reasoning rather than physical laws, thereby impeding the model’s ability to grasp the
fundamental properties of the visual world.

In contrast, Matrix-Game 2.0 eliminates all forms of language input, focusing solely on learning
spatial structures and dynamic patterns from image. This de-semanticized modeling approach
is inspired by the concept of spatial intelligence [45], emphasizing that the model’s capabilities
should stem from intuitive understanding of visual and physical laws rather than abstract semantic
scaffolding.

As shown in Figure 8(a), Matrix-Game 2.0 takes a single reference image and corresponding actions
as input, generating a physically plausible video. A 3D Causal VAE [20, 54] is first employed to
compress raw video data along both spatial and temporal dimensions — by a factor of 8×8 in space
and 4 in time — enhancing training efficiency and modeling capability. The image input is encoded
by 3D VAE encoder and the CLIP image encoder [33] as condition input. Guided by input actions
provided by users, the Diffusion Transformer(DiT) generates a visual token sequence, which is
subsequently decoded into the video through 3D VAE decoder.

To enable interactions between users and generated contents, Matrix-Game 2.0 incorporates an
action module to achieve controllable video generation. Inspired by the control design paradigms of
GameFactory [53] and Matrix-Game [56], we embed frame-level action signals into the DiT blocks,
as illustrated in Figure 8(b). The injected action signals are divided into two categories: discrete
movement actions via keyboard inputs, and continuous viewpoint actions via mouse movements.
Specifically, continuous mouse actions are directly concatenated to the input latent representations,
forwarded through an MLP layer, and then passed through a temporal self-attention layer. Further-
more, keyboard actions are queried by the fused features through a cross-attention layer, leading to
precise controllability for interactions. Different from Matrix-Game [56], we use Rotary Positional
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Figure 8: Overview of Matrix-Game 2.0 Architecture. The foundation model is derived from the
Wan [43] I2V design. By removing the text branch and adding action modules as in Matrix-Game [56],
the model predicts next frames only from visual contents and corresponding actions.

Encoding [38] (RoPE) to replace the sin-cos embeddings added to keyboard inputs to facilitate long
video generation.

4.2 Real-time Interactive Auto-Regressive Video Generation

Unlike Matrix-Game [56] which employs a full-sequence diffusion model limited to fixed-length
generation, we develop an auto-regressive diffusion model for real-time long video synthesis. Our
approach transforms the bidirectional foundation model into an efficient auto-regressive variant
through Self-Forcing [18], which addresses exposure bias by conditioning each frame on previously
self-generated outputs rather than ground truth. This significantly reduces the error accumulation
characteristic of Teacher Forcing [19] or Diffusion Forcing [7] approaches.

The distillation process comprises two key phases: student initialization and DMD-based [51] Self-
Forcing training. We first initialize the student generator Gϕ with weights from the base model, then
construct a dataset of ODE trajectories

{
xi
t

}N

i=1
, with t is sampled from 3 steps subset of [0, T ].

During training, block-wise causal masks are applied to keys and values in each attention layer.
As shown in Figure 9, we first sample a sequence of noisy input with N frames from the ODE
trajectories and split it into L chunks with independent timesteps

{
xi
T

}L

i=1
. The student generator

takes corresponding actions as input and backwards with the regression loss between the denoised
output and clean output:

Lstudent = Ex,ti

∥∥∥Gϕ

({
xi
ti

}L

i=1
,
{
ci
}L

i=1
,
{
ti
}L

i=1

)
−
{
xi
0

}L

i=1

∥∥∥2 (4)

The subsequent DMD phase (Figure 10) aligns the student’s distributions pθ,t
(
x1:N
t

)
with the teacher

model’s preal,t
(
x1:N
t

)
through Self-Forcing. Critically, the generator samples previous frames from

its own distribution rather than the ground-truth training data, mitigating training-inference gap and
caused error accumulation.

The KV-caching mechanism enables efficient sequential generation by maintaining a fixed-length
cache of recent latents and action embeddings. Our rolling cache implementation automatically
manages memory by evicting oldest tokens when exceeding capacity, supporting infinite-length
generation. To address potential training-inference gap in image-to-video scenarios where the
first frame may be excluded during long video inference, we constrain the KV-cache window size.
This forces the model to rely more on its learned priors and understanding to the input actions for
generation, also improving robustness by making initial frames invisible to subsequent latent frames
during training.
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Figure 9: Causal Student Model Initialization via ODE Trajectories. The proposed initialization
method stabilizes subsequent distillation training by deriving a few-step causal student model from
the bidirectional teacher model through optimal ODE trajectory sampling.

Figure 10: Overview of Causal Diffusion Model Training via Self-Forcing. The distillation process
aligns the student model’s distributions with the teacher model’s through self-conditioned generation.
This approach effectively mitigates error accumulation while maintaining the generation quality.

5 Experiments

5.1 Experiment Settings

Implementation Details. For training the foundation model, we initialize our model with SkyReels-
V2-I2V-1.3B [8], which follows Wan 2.1 [43] architecture. The 1.3B variant provides an optimal
balance between generation quality and computational efficiency, enabling real-time and high-quality
generation performance. We remove the text injection modules from the released checkpoint. To
stabilize the whole training process, we firstly fine-tune the model for 5k steps. After that, action
modules are added into each DiT block, leading to the total model size as 1.8B. We train the
foundation model for 120k steps with learning rate=2e-5, batch size=256.

For distillation, we firstly collect 40k ODE pairs and fine-tune the causal student model for 6k steps,
with subsequent 4k training steps via DMD-based Self-Forcing. The learning rate is 6e-6. The chunk
size of latent frames and attention local size are set as 3 and 6, respectively. Additionally, self-forcing
is a data-free training method, allowing for manual design lf the action sequence distribution, which
can align better for input actions from users rather than random action sequences produced by
automatic scripts.
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Figure 11: Qualitative Comparisons on Minecraft Scene Generations. Compared to Oasis [12],
our model shows superior visual performance in long interactive video generations.

Table 1: Quantitative Comparisons on Minecraft Scene Generations.
Model Visual Quality Temporal Quality Action Controllability Physical Understanding

Image Quality ↑ Aesthetic ↑ Temporal Cons. ↑ Motion smooth. ↑ Keyboard Acc. ↑ Mouse Acc. ↑ Obj. Cons. ↑ Scenario Cons. ↑
Oasis [12] 0.27 0.27 0.82 0.99 0.73 0.56 0.18 0.84
Ours 0.61 0.50 0.94 0.98 0.91 0.95 0.64 0.80

Dataset. The training dataset, produced by the pipeline in Section 3, consists of about 800-hour
action-annotated video at 360p resolution in total. The data includes 153-hour Minecraft video data
and 615-hour Unreal Engine data, arranged into 57 frames for each video clip. For real-world scenes,
we utilize the open-source Sekai dataset [24], obtaining an additional 85 hours of training data after
data curation. Given that the environment navigation speed and FPS in the Sekai dataset is different
from that of Unreal Engine scenes, we perform frame resampling on the Sekai data to align the
temporal dynamics and movements. To validate the universality of our framework, we further collect
574-hour GTA-driver data and 560-hour Temple Run game data, featuring dynamic scenes interaction
for additional fine-tuning. All the videos are resized to 352×640 resolution.

Evaluation Metrics and Baselines. We assess our universal real-time model using the comprehen-
sive GameWorld Score Benchmark [56] introduced in Matrix-Game 1.0. This benchmark provides a
multi-dimensional evaluation framework examining four critical capabilities: visual quality, temporal
quality, action controllability and physical rule understanding. Given the current scarcity of open-
source interactive world models, we conduct separate evaluations for two distinct domains: Minecraft
and wild scenes. For Minecraft environments, we compare against Oasis [12] as our primary baseline,
while YUME [27] is employed for more complex wild scene generation tasks. All experiments utilize
a 597-frame composite action sequence, with evaluation performed on 32 Minecraft scenes and 16
diverse wild scene images, to cover diverse interactive conditions.

5.2 Generation Results

We present comprehensive qualitative and quantitative evaluations comparing Matrix-Game 2.0
against state-of-the-art baselines across multiple domains, including long video generation in both
Minecraft environments and wild scenes, as well as generation visualization for GTA driving scenarios
and TempleRun game.

Minecraft Scene Results. Figure 11 and Table 1 demonstrate Matrix-Game 2.0’s superior perfor-
mance compared to Oasis [12]. While Oasis exhibits significant quality degradation after several
dozen frames, our model maintains excellent performance throughout extended generation sequences.
Quantitative metrics reveal substantial improvements across most evaluation dimensions, though we
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Figure 12: Qualitative Comparisons on Wild Scene Generations. For wild image inputs, Matrix-
Game 2.0 exhibits strong generalization capabilities, fast generation speed, and accurate interaction
responses.

Model Visual Quality Temporal Quality Physical Understanding

Image Quality ↑ Aesthetic ↑ Temporal Cons. ↑ Motion smooth. ↑ Obj. Cons. ↑ Scenario Cons. ↑
YUME [27] 0.65 0.48 0.85 0.99 0.77 0.80
Ours 0.67 0.51 0.86 0.98 0.71 0.76

Table 2: Quantitative Comparisons on Wild Scene Generations.

observe marginally lower scores in scene consistency and action smoothness. We attribute this to
Oasis’s tendency to produce static frames after collapse, which inflates these particular metrics.

Wild Scene Results. Our comparison with YUME [27] in Figure 12 reveals Matrix-Game 2.0’s
strong robustness in wild scene generation. YUME develops noticeable artifacts and color saturation
issues after several hundred frames, while ours maintains stable style fidelity. Moreover, the generation
speed of YUME maintains slow, which is hard to be directly applied for interactive world modeling.

Table 2 shows the quantitative results. Since the action controllability assessment in GameWorld
Score Benchmark is designed specifically for Minecraft evaluation, it cannot be directly applied to
wild scenes. Empirical results demonstrate that YUME exhibits significantly degraded action control
performance in out-of-domain scenarios, while our method maintains robust controllability. The
generated contents after collapsing of YUME tend to be static, which may also cause higher scores
for object consistency and scenario consistency.

More Qualitative Results. Figure 13 showcases Matrix-Game 2.0’s exceptional capability for
long video generation with minimal quality degradation. The model’s strong domain adaptability is
further evidenced by its performance in diverse scenarios including GTA driving scenes (Figure 14)
and TempleRun game (Figure 15), demonstrating its potential as a foundation framework for world
modeling.

5.3 Ablation Studies

Different KV-cache Local Size. The KV-cache mechanism plays a crucial role in maintaining
contextual information during Matrix-Game 2.0’s auto-regressive generation process. Our investi-
gation reveals an important trade-off in cache size selection: while larger caches (9 latent frames)
theoretically provide richer historical context, they paradoxically lead to earlier onset of visual
artifacts (Figure 16). Comparative analysis shows that models with 6-frame caches demonstrate
superior long-term generation quality, with significantly reduced distortion and degradation artifacts.

We attribute this phenomenon to an over-reliance on cached information during generation. With
larger cache size, the model increasingly depends on stored cache rather than actively correcting
accumulated errors through learned capability of model itself. This creates a compounding effect
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Figure 13: Long Video Generations of Matrix-Game 2.0. The real-time generation results demon-
strate excellent visual quality and precise action controllability when generating long videos.

Acceleration Techniques Visual Quality Temporal Quality Action Controllability Physical Understanding Speed

Image ↑ Aesthetic ↑ Temporal ↑ Motion ↑ Keyboard ↑ Mouse ↑ Object ↑ Scenario ↑ FPS ↑
(1) +VAE Cache 0.61 0.51 0.93 0.97 0.91 0.95 0.68 0.81 15.49

(2) (1)+Halving action modules 0.61 0.51 0.94 0.97 0.92 0.95 0.63 0.81 21.03
(3) (2)+Reducing denoising steps (4→3) 0.61 0.50 0.94 0.98 0.91 0.95 0.64 0.80 25.15

Table 3: Quantitative Comparisons of Different Acceleration Techniques. While maintaining com-
parable generation quality metrics, our combined acceleration techniques achieve 25 FPS throughput,
enabling on-the-fly video generation.

where artifacts in early frames become more memorized through the cache mechanism, ultimately
being treated as valid scene elements. Our empirical study suggests that moderate cache sizes (6
frames) provide a balance between context preservation and error correction capability.

Comparative Analysis of Acceleration Techniques. To achieve real-time generation at 25 FPS,
we systematically optimized both the diffusion model and VAE components through several key
modifications. First, we integrated the efficient Wan2.1-VAE architecture with caching mechanism,
significantly accelerating the decoding process for extended video sequences. Second, we strategically
employ action modules only in the first half of DiT blocks, and reduce the denoising steps from 4
to 3 in the distillation process. The quantitative comparisons are shown in Table 3. Quantitative
comparisons shown in Table 3 demonstrate that these acceleration strategies can achieve 25 FPS
while maintaining generation quality, resulting in an optimal speed-quality trade-off.
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Figure 14: Generation Results under GTA5 driving scenes.

Figure 15: Generation Results under the Parkour Game TempleRun scene.

6 Conclusion

Matrix-Game 2.0 represents a significant advancement in real-time interactive video generation
through carefully constructed data pipeline and effective training framework. First, we developed a
comprehensive data production pipeline that overcomes previous limitations in obtaining high-quality
training data for interactive scenarios. Our systematic pipeline based on Unreal Engine, together with
the video recording framework verified in GTA5 environments, establish new standards for scalable
production of action-annotated video data at unprecedented fidelity.

Second, we introduced an auto-regressive diffusion framework that combines action-conditioned
modulation with distillation based on Self-Forcing. This approach effectively mitigates the error
accumulation problem that has traditionally plagued long video synthesis while maintaining real-time
performance. Through systematic optimizations of both the diffusion process and VAE architecture,
we achieve a generation speed of 25 FPS - for seamless human-in-the-loop interaction.

Extensive experiments demonstrate that Matrix-Game 2.0 sets new benchmarks for interactive
generation systems, delivering excellent performance in both visual quality and action controllability.
The model’s ability to maintain temporal coherence during long-term interactions while responding
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Figure 16: Qualitative Comparison on Different Local Size for KV-cache. Larger local size cause
artifacts in long sequences while smaller local size can keep a balance between visual quality and
content fidelity.

Figure 17: Bad cases. Matrix-Game-V2 sometimes fails when handling out-of-domain scenes, like
producing over-saturated (left) or degraded (right) results.

precisely to user inputs represents a substantial step forward for applications requiring real-time
world simulation.

6.1 Limitations

While demonstrating strong performance, Matrix-Game 2.0 has several limitations that point to future
research directions. First, the generalization capability needs to be improved when handling out-of-
domain (OOD) scenes - for example, moving the camera upward or step forward for a long time in
OOD scenes may result in over-saturated or degraded results. Second, the current 352×640 resolution
output falls short of state-of-the-art video generation models that typically produce higher-definition
results. Third, while the auto-regressive diffusion model enables long video generation, maintaining
content consistency and history over long video generations remains challenging due to the lack of
explicit memory mechanisms for history preservation.

We note that these limitations present clear pathways for improvement. The generalization and
resolution issues can be improved through expanded training data domain and model architecture
scaling. Moreover, the last limitation could be addressed by integrating compatible memory retrieval
mechanisms without compromising real-time performance. These directions will be the focus of our
future work towards making interactive video generation more practical for real-world applications.
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